
Cellocity
Release 0.1.2

Jan 28, 2021

Contents:

1 Introduction to Cellocity 1
1.1 A 30 second pitch . 1
1.2 Installing Cellocity . 1
1.3 Cellocity development history . 1
1.4 Cellocity backbone . 2
1.5 Cellocity architecture . 2
1.6 Examples of algorithms and vector field quantifications implemented 2
1.7 Examples . 2
1.8 Support . 6
1.9 References . 6

2 Cellocity Tutorial 7
2.1 Step-by-step guide . 7

2.1.1 Load a file and create a Channel object . 7
2.1.2 Preprocess Channel object . 8
2.1.3 Prepare for Analysis by creating an Analyzer object . 9
2.1.4 Extract data by creating an Analysis object. 9

3 Validation of the Cellocity Software 11
3.1 Validation dataset . 11
3.2 Downloading the validation dataset . 13
3.3 Performing the validation on your local installation . 13
3.4 Process time . 13
3.5 Analysis of flow speeds . 14
3.6 Qualitative vector field comparison . 15
3.7 Quantitative vector field comparison . 16
3.8 In conclusion . 19
3.9 References . 20

4 Developer Information 21
4.1 Contributing to Cellocity . 21
4.2 Bug reports and feature requests . 21
4.3 A note on metadata and file formats . 21
4.4 Pixel resolution in Micromanager vs ImageJ .tif files . 22
4.5 Creating your own image format reader . 22
4.6 Detailed description of the 5-𝜎 correlation length analysis algorithm 22

4.6.1 The algorithm steps: . 22

i

5 The Cellocity API Reference 25
5.1 The channel module . 25
5.2 The analysis module . 28
5.3 The validation module . 35

6 Indices and tables 37

Bibliography 39

Python Module Index 41

Index 43

ii

CHAPTER 1

Introduction to Cellocity

1.1 A 30 second pitch

Cellocity is a bioimage analysis tool for quantifying confluent cell layer dynamics. The
main advantages of Cellocity is its ability to work on unlabeled Brightfield time lapse mi-
croscopy data, and to both quantify and visualize abstract optical flow analyses to the user.

Fig.
1:
Figure
show-
ing
sim-
u-
lated
raw
data
(left),
a
vec-
tor
field
vi-
su-
al-
iza-
tion
(cen-
ter),
and
a
heat
map
en-
cod-
ing
speeds
(right).

1.2 Installing Cellocity

Cellocity is available on the Python package index and the latest release can be installed using pip:

pip install cellocity

You can also clone the Github repository if you are interested in getting the current development version of Cellocity:

git clone https://github.com/Oftatkofta/cellocity.git cellocity
cd cellocity
pip install -e .

Cellocity requires Python (>3.7), tifffile (2020.5.5), python-OpenCV (4.2.0.34), OpenPIV (0.21.3), Numpy (1.18.4),
Pandas (1.0.3) to function correctly. Additionally, you need Matplotlib (3.2.1) and Seaborn (0.10.1) in order to visu-
alize the validation output. If you perform a pip install from PyPi, all dependencies will be installed automatically.

1.3 Cellocity development history

Cellocity has been developed over multiple years and several projects. The nucleus was developed in Stig Ove Bøe’s
research group at Oslo University Hospital and at the Nanoscopy Gaustad imaging core facility at the University
of Oslo. Many of Cellocity’s core algorithm implementations and methods, such as the 5-sigma correlation length
analysis, were presented in a Nature Communications publication in 2018 [3].

1

https://ous-research.no/home/boe/Group+members/10831
https://www.med.uio.no/english/research/core-facilities/advanced-light-microscopy-gaustad/
https://www.nature.com/articles/s41467-018-05578-7

Cellocity, Release 0.1.2

The framework is currently being used and further developed as the analysis backbone for studies of microbial
interactions with the gut epithelium in the Sellin Laboratory at Uppsala University.

1.4 Cellocity backbone

Cellocity is built on top of Christoph Gohlke’s Tifffile library and uses the Tifffile object to read input and
write output files. Cellocity also relies heavily on OpenCV [1] and OpenPIV [5] for optical flow analysis and output
visualizations. NumPy [6] is used internally for image data manipulation in the form of numpy.ndarrays, and
matplotlib is used to generate output plots [2].

1.5 Cellocity architecture

The core element in Cellocity is the Channel object, which represents one Z-plane of one time lapse im-
age channel. Channel objects also handle image pre-processing, such as temporal or spatial median filter-
ing. Channel objects are given as input to Analyzer objects, which perform specific analyses on the data.
Analyzer objects can then, in turn, be given to Analysis objects, which take care of performing further
analyses, such as calculating the alignment index, instantaneous order parameter (𝜓), and correlation length.

1.6 Examples of algorithms and vector field quantifications imple-
mented

Instantaneous Order Parameter (𝜓) 𝜓 = 1 corresponds to a perfectly uniform velocity field, where all the cells
move in the same direction and with the same speed, while 𝜓 ≈ 0 is expected for a randomly oriented velocity
field. See [4] for details.

Alignment Index The Alignment Index describes how well each vector in a vector field aligns with the average
velocity vector. See [4] for further details.

5-𝜎 correlation length 5-𝜎 correlation length is a way to measure the correlation length in large vector fields. It
finds the average distance at which the direction of velocities are no longer significantly different at a level
of 5 standard deviations (𝜎). The algorithm was originally presented and utilized in [3]. A more detailed

description can be found in the Developer Information.

1.7 Examples

Simple
file
load-
ing
ex-
am-
ple:

2 Chapter 1. Introduction to Cellocity

https://www.imbim.uu.se/research-groups/infection-and-immunity/sellin-mikael/
https://pypi.org/project/tifffile/
https://opencv.org/
http://www.openpiv.net/
https://numpy.org/
https://matplotlib.org/

Cellocity, Release 0.1.2

from
→˓cellocity.
→˓channel
→˓import
→˓Channel
from
→˓tifffile
→˓import
→˓Tiffile

tif
→˓=
→˓Tifffile(myFile)
channel_
→˓1
→˓=
→˓Channel(0,
→˓

→˓tif,
→˓

→˓

→˓"channel
→˓name
→˓")
→˓

→˓#0-
→˓indexed
→˓channels,
→˓

→˓meaning
→˓ch1

→˓in ImageJ

Simple
pre-
processing
ex-
am-
ple:

from
→˓cellocity.
→˓channel
→˓import
→˓MedianChannel

→˓#Trim
→˓Channel
→˓to
→˓frame
→˓2-
→˓40
channel_
→˓1.
→˓trim(2,
→˓

→˓41)(continues on next page)

1.7. Examples 3

Cellocity, Release 0.1.2

(continued from previous page)

→˓#3-
→˓frame
→˓gliding
→˓temporal
→˓median
→˓projection
→˓by
→˓default
channel_
→˓1_
→˓median
→˓=
→˓MedianChannel(channel_
→˓1)

Simple
op-
ti-
cal
flow
cal-
cu-
la-
tion
ex-
am-
ple:

from
→˓cellocity.
→˓analysis
→˓import
→˓FarenbackAnalyzer

flow_
→˓Ch1
→˓=
→˓FarenbackAnalyzer(channel_
→˓1_
→˓median,
→˓

→˓

→˓"um/
→˓min
→˓")
flow_
→˓Ch1.
→˓doFarenbackFlow()

Simple
anal-
y-
sis
data
read-

4 Chapter 1. Introduction to Cellocity

Cellocity, Release 0.1.2

out
ex-
am-
ple:

from
→˓cellocity.
→˓analysis
→˓import
→˓FlowSpeedAnalysis

→˓

→˓

→˓

→˓speed_
→˓analysis_
→˓Ch1
→˓=
→˓FlowSpeedAnalysis(flow_
→˓Ch1)

→˓

→˓

→˓

→˓speed_
→˓analysis_
→˓Ch1.
→˓calculateAverageSpeeds()

→˓

→˓

→˓

→˓speed_
→˓analysis_
→˓Ch1.
→˓saveCVS(
→˓"/
→˓path/
→˓to/
→˓savefolder
→˓")

For
more
de-
tailed
ex-
am-
ples
please
check
out
the
tu-
to-
rial

1.7. Examples 5

Cellocity, Release 0.1.2

sec-
tion.

1.8 Support

If
some-
thing
is
un-
clear
or
if
you
are
in
need
of
sup-
port,
please
con-
tact

the developer by creating a new support issue.

1.9 References

6 Chapter 1. Introduction to Cellocity

https://github.com/Oftatkofta/cellocity/issues

CHAPTER 2

Cellocity Tutorial

2.1 Step-by-step guide

This tutorial will show you how to:

1. Load a file and create a cellocity.channel.Channel object.

2. Preprocess the Channel object.

3. Prepare for analysis by creating an cellocity.analysis.Analyzer object from the Channel object.

4. Extract data by creating an cellocity.analysis.Analysis object.

2.1.1 Load a file and create a Channel object

from cellocity.channel import Channel
import tifffile

my_filename = "2_channel_micromanager_timelapse.ome.tif"
chToAnalyze = 0 # 0-based indexing of channels

#safely load file
with tifffile.TiffFile(my_filename, multifile=False) as tif:

#strips ome.tif from filename
label = my_filename.split(".")[0]
channelName = label + "_Ch" + str(chToAnalyze + 1)
channel_0 = Channel(chToAnalyze, tif, name=channelName)

Warning: Cellocity assumes that it can hold all Channel data in RAM.

7

Cellocity, Release 0.1.2

A Tifffile does not load all its image data into RAM when created, however upon accessing data
during Channel creation some of it will be cached, thus increasing its size somewhat. Channel
objects store all image data in RAM and can get quite hefty for long time lapses.

2.1.2 Preprocess Channel object

First, we will check if the frame interval stated in the metadata is in agreement with the time
stamps of the individual frames in the channel (within 1%). This is done with the Channel.
doFrameIntervalSanityCheck(maxDiff=0.01) method. If there is an discrepancy between the actual
frame intervals and the intended, if can be fixed by calling the Channel.fixFrameInterval() method, which
overwrites the intended frame interval with the actual average frame interval.

if not channel_0.doFrameIntervalSanityCheck():
channel_0.fixFrameInterval()

Note: Checking and fixing the frame interval is currently only possible on MicroManager ome.tif files.
Individual frame timestamps are lost when saving .tif files in ImageJ.

Channel objects have convenient preprocessing methods, such as trimming frames and temporal median filtering.
Let’s start by trimming our newly created channel to frames 10-60, meaning we discard frames 0-9 and from frame 60
onward to the end.

#Trim channel to include frame 10-59
channel_0.trim(10,60)

Now let’s employ a temporal median filter, meaning we do a median filtering over time. This will have the effect
of filtering out fast moving free-floating debris, thus greatly reducing the noise in the final analysis. This is done by
creating a child cellocity.channel.MedianChannel object. Median filtering can be done with a gliding
window (default), or by binning the frames. MedianChannel takes care of properly recalculating frame intervals in
either case. The default frame sampling interval is 3.

from cellocity.channel import MedianChannel

gliding_median_channel_0 = MedianChannel(channel_0)

binned_4frame_median_channel_0 = MedianChannel(channel_0,
doGlidingProjection=False,
frameSamplingInterval=4)

MedianChannel objects can also be created by calling the .getTemporalMedianChannel() method on a
Channel. The following code gives identical results to the above example:

arguments ={doGlidingProjection = True,
frameSamplingInterval=3,
startFrame=0,
stopFrame=None
}

gliding_median_channel_0 = channel_0.getTemporalMedianChannel(arguments)

arguments = {doGlidingProjection = False,
frameSamplingInterval=4,
startFrame=0,

(continues on next page)

8 Chapter 2. Cellocity Tutorial

Cellocity, Release 0.1.2

(continued from previous page)

stopFrame=None}
binned_4frame_median_channel_0 = channel_0.getTemporalMedianChannel(arguments)

2.1.3 Prepare for Analysis by creating an Analyzer object

Now let’s perform an optical flow analysis of our preprocessed Channel. This is done by instantiating an Analyzer
object with a Channel as argument. In this case we will perform an optical flow analysis using the Farenback flow
analysis from OpenCV. This is handled by a FarenbackAnalyzer, which is a specific subtype FlowAnalyzer
of Analyzer.

FarenbackAnalyzer takes two arguments, one Channel and one unit. unit is a string indicating the unit that
we want the output to be in. Currently only “um/s”, “um/min”, and “um/h” are implemented. Cellocity handles all
unit conversions automatically in the background.

from cellocity.analysis import FarenbackAnalyzer

fb_analyzer_ch0 = FarenbackAnalyzer(channel = gliding_median_channel_0, unit = "um/h")
fb_analyzer_ch0.doFarenbackFlow()

Note: Quite a lot of effort has gone in to selecting sensible default parameters that work well for microscopy data for
the FlowAnalyzer objects FarenbackAnalyzer and OpenPivAnalyzer, as is demonstrated in the Valida-
tion of the Cellocity Software section.

2.1.4 Extract data by creating an Analysis object.

Great, now we have calculated the optical flow of channel_0 with the default parameters. Now its time to extract data.
This is done by creating Analysis objects. In our case we want to analyse the flow speeds of our channel. To do
this we can utilize the FlowSpeedAnalysis class, which works on FlowAnalyzer objects.

from cellocity.analysis import FlowSpeedAnalysis

speed_analysis_ch0 = FlowSpeedAnalysis(fb_analyzer_ch0)
speed_analysis_ch0.calculateSpeeds()
speed_analysis_ch0.calculateAverageSpeeds()

When speeds have been calculated the results can be stored either as a 32-bit tif, where pixel values represent flow
speeds in the location of the pixel, or the average speed of each frame can be saved as a .csv file for further processing.

from pathlib import Path

savepath = Path("path/to/save/folder")

speed_analysis_ch0.saveArrayAsTif(outdir=savepath):
speed_analysis_ch0.saveCSV(outdir=savepath, fname="mySpeeds.csv", tunit="s")

That’s it! If you want more detailed information, please check the The Cellocity API Reference , the Validation of
the Cellocity Software contains more examples of different Analysis objects in use, and the Developer Information
contains information on how to submit a bug report.

2.1. Step-by-step guide 9

Cellocity, Release 0.1.2

10 Chapter 2. Cellocity Tutorial

CHAPTER 3

Validation of the Cellocity Software

3.1 Validation dataset

In order to validate the underlying analyzers in Cellocity we have generated a “ground truth”, real-world microscopy
dataset. The dataset was generated by translating and imaging, with DIC contrast, a fixed monolayer of primary gut
epithelium on a high precision linear microscope stage, using a wide selection of magnifications. 10 images were
acquired with the stage translated 1 𝜇𝑚 in either the X, Y or both directions simultaneously between frames. Images
were acquired on a Nikon Eclipse Ti-2 microscope, equipped with a Photometrics Prime 95B camera (1608x1608, 11
um pixel size). The general structure of the dataset is outlined in the table below.

11

Cellocity, Release 0.1.2

Objective Tube
lens

Total
magnifi-
cation

Pixel
Size
(um)

X trans-
lation
(um)

Y trans-
lation
(um)

Filename

Nikon
10X/0.45 Air
Pln.Apo.Lmbd

1X 10X 1.1235 0 1 fixed_monolayer_DIC_10X_dX-
0um_dY-
1um_1_MMStack.ome.tif

Nikon
10X/0.45 Air
Pln.Apo.Lmbd

1X 10X 1.1235 1 0 fixed_monolayer_DIC_10X_dX-
1um_dY-
0um_1_MMStack.ome.tif

Nikon
10X/0.45 Air
Pln.Apo.Lmbd

1X 10X 1.1235 1 1 fixed_monolayer_DIC_10X_dX-
1um_dY-
1um_1_MMStack.ome.tif

Nikon
10X/0.45 Air
Pln.Apo.Lmbd

1.5X 15X 0.749 0 1 fixed_monolayer_DIC_15X_dX-
0um_dY-
1um_1_MMStack.ome.tif

Nikon
10X/0.45 Air
Pln.Apo.Lmbd

1.5X 15X 0.749 1 0 fixed_monolayer_DIC_15X_dX-
1um_dY-
0um_1_MMStack.ome.tif

Nikon
10X/0.45 Air
Pln.Apo.Lmbd

1.5X 15X 0.749 1 1 fixed_monolayer_DIC_15X_dX-
1um_dY-
1um_1_MMStack.ome.tif

Nikon 40X/0.6
Air S.Pln.Fl.

1X 40X 0.286 0 1 fixed_monolayer_DIC_40X_dX-
0um_dY-
1um_1_MMStack.ome.tif

Nikon 40X/0.6
Air S.Pln.Fl.

1X 40X 0.286 1 0 fixed_monolayer_DIC_40X_dX-
0um_dY-
1um_1_MMStack.ome.tif

Nikon 40X/0.6
Air S.Pln.Fl.

1X 40X 0.286 1 1 fixed_monolayer_DIC_40X_dX-
0um_dY-
1um_1_MMStack.ome.tif

Nikon 40X/0.6
Air S.Pln.Fl.

1.5X 60X 0.191 0 1 fixed_monolayer_DIC_60Xopt_dX-
0um_dY-
1um_1_MMStack.ome.tif

Nikon 40X/0.6
Air S.Pln.Fl.

1.5X 60X 0.191 1 0 fixed_monolayer_DIC_60Xopt_dX-
1um_dY-
0um_1_MMStack.ome.tif

Nikon 40X/0.6
Air S.Pln.Fl.

1.5X 60X 0.191 1 1 fixed_monolayer_DIC_60Xopt_dX-
1um_dY-
1um_1_MMStack.ome.tif

Nikon 60X/0.7
Air S.Pln.Fl.

1X 60X 0.125 0 1 fixed_monolayer_DIC_60X_dX-
0um_dY-
1um_1_MMStack.ome.tif

Nikon 60X/0.7
Air S.Pln.Fl.

1X 60X 0.125 1 0 fixed_monolayer_DIC_60X_dX-
1um_dY-
0um_1_MMStack.ome.tif

Nikon 60X/0.7
Air S.Pln.Fl.

1X 60X 0.125 1 1 fixed_monolayer_DIC_60X_dX-
1um_dY-
1um_1_MMStack.ome.tif

This dataset allowed us compare the “golden standard” of cell layer dynamics analysis, Particle Image Velocimetry
(PIV) analysis, with the less frequently used Optical Flow analysis. Our conclusion mirror what was found in1, which

1 Dhruv K. Vig, Alex E. Hamby and Charles W. Wolgemuth. On the Quantification of Cellular Velocity Fields. Biophysical Journal, 110:1469-

12 Chapter 3. Validation of the Cellocity Software

Cellocity, Release 0.1.2

is that Optical Flow analysis is indeed superior to PIV analysis, both with respect to accuracy and efficiency. The
following section will substantiate this finding. All analyses were run on a early 2020 Dell XPS 15 7590 laptop,
running Windows 10.

3.2 Downloading the validation dataset

The dataset has been deposited into the BioStudies database with the accession number S-BSST461 and can be down-
loaded from there.

3.3 Performing the validation on your local installation

All the validation figures can be re-generated on your local install by running the following code:

from cellocity import validation
from pathlib import Path

inpath = Path("path/to/S-BSST641/")
outpath = Path("path/to/output/folder")

validation.run_base_validation(inpath, outpath)

Alternatively the validation code can be run as a script found in /tests:

After some time you should have generated the 3 figures below in this chapter in your chosen output folder. To test
the 5-sgigma analysis run the following code:

from cellocity import validation
from pathlib import Path

inpath = Path("path/to/S-BSST641/")
outpath = Path("path/to/output/folder")

validation.run_5sigma_validation(inpath, outpath)

Alternatively the validation code can be run as a script found in /tests:

First we’ll start by looking at the base validation.

3.4 Process time

Fig. 1: Figure showing violin plots of processing times for individual files in the test dataset. Process time is in seconds
and denotes time to run either the OpenPivAnalyzer or the FarenbackAnalyzer on both a Channel and a
MedianChannel object created from each file in the dataset. Each file is a 10x1608x1608 16-bit array.

Optical
Flow
is
clearly
faster
to
pro-
cess
all
files

1475, 2016. doi:10.1016/j.bpj.2016.02.032.

3.2. Downloading the validation dataset 13

https://www.ebi.ac.uk/biostudies/studies/S-BSST461
https://doi.org/10.1016/j.bpj.2016.02.032

Cellocity, Release 0.1.2

by
a
fac-
tor
of
~3-
4X.
Now,
let’s
com-
pare
over-
all
ac-
cu-
racy.
Since
the
dataset
was
cre-
ated
by
trans-
lat-
ing
a
high
pre-
ci-
sion
stage
on
a
well
cal-
i-
brated
mi-
cro-
scope,
we

know that the speed of the apparent flow is dependent on the translation distance. In our case we translated the stage
1 𝜇𝑚 between images, and if we set the frame interval to 1 second, then the speed should be 1 𝜇𝑚/𝑠 for the X and Y
translation and

√
2 = 1.42 𝜇𝑚/𝑠 for the X+Y translation.

3.5 Analysis of flow speeds

Fig. 2: Figure showing box plots of average speeds for each frame for each file in the test dataset. y-axis denotes the
speed in 𝜇𝑚/𝑠, as read out by the .calculateAverageSpeeds() method of FlowSpeedAnalyser.

Both
Analyzers
pro-
duce

14 Chapter 3. Validation of the Cellocity Software

Cellocity, Release 0.1.2

re-
sults
close
to
the
ex-
pected,
but
the
OpenPivAnalyzer
has
a
ten-
dency
to
un-
der-
es-
ti-
mate
the
speed
and
has
greater

variance.

Cell monolayers grown on loose hydrogel support, as those used in our validation dataset here, are seldom completely
planar and portions are often out of focus during imaging. This phenomenon has also been captured in the analysis.
If we draw a visualization of the flow generated superimposed on the background Channel, we can study this
phenomenon in more detail.

3.6 Qualitative vector field comparison

Fig. 3: Figure showing flow vector visualization of a 600x600 crop from the bottom right corner of
the final frame from the 40X magnification files in the dataset. Images were generated using the .
draw_all_flow_frames_superimposed() method common to all FlowAnalysis objects. Horizontal
scale bar denotes a flow of 1 𝜇𝑚/𝑠 .

Studying
the
above
fig-
ure
al-
lows
us
to
get
a
deeper
un-
der-
stand-
ing
of
why
op-

3.6. Qualitative vector field comparison 15

Cellocity, Release 0.1.2

ti-
cal
flow
and
PIV
dif-
fer.
Note
that
the
area
in
the
bot-
tom
right
cor-

ner is not properly focused. This causes the PIV algorithm problems in accurately determining the flow, as illustrated
by the inhomogeneities in the vector field. This error can be quantified by calculating the alignment index, a
measurement on how well each component vector aligns with the average flow. In our test dataset the flow should be
close to completely uniform, giving an expected alignment index of 1.0.

3.7 Quantitative vector field comparison

Fig. 4: Figure showing box plots of average alignment indexes for each frame for each file in the test dataset.
y-axis denotes the Alignment Index (dimensionless), as read out by the .getAvgAlignIdxs() method of
AlignmentIndexAnalysis.

Quantifying
how
well
the
vec-
tor
field
is
aligned
al-
lows
us
to
con-
firm
our
in-
ti-
tal
ob-
ser-
va-
tion
that
PIV
anal-
y-
sis

16 Chapter 3. Validation of the Cellocity Software

Cellocity, Release 0.1.2

does
pro-

duce more variability in the direction of the flow vectors. Optical Flow generates align-
ment indexes very close to the expected value of 1.0, even after temporal median filtering.

Fig.
5:
Figure
show-
ing
box
plots
of
av-
er-
age
in-
stan-
ta-
neous
or-
der
pa-
ram-
e-
ters
(iop)
for
each
frame
for
each
file
in
the
test
dataset.
y-
axis
de-
notes
the
iop
(di-
men-
sion-
less),
as
read
out
by
the
.
getIops()
method
of
IopAnalysis.

The instantaneous order parameter is a measure of how ordered a vector field is, 0 repre-
sents a completely random field and 1 represents a comletely homogenous field, where all vec-
tors have the same direction and magnitude. The expected value for the test data set is 1.

Lastly, let’s have a look at the 5-𝜎 correlation length analysis. 5-𝜎 correlation length is a way to measure the
correlation length in large vector fields. The algorithm finds the average distance at which the direction of velocities
are no longer significantly different at a level of 5 standard deviations (𝜎). The algorithm was originally presented
and utilized in2. A more detailed description can be found in the Developer Information.

2 Emma Lång, Anna Połeć, Anna Lång, Marijke Valk, Pernille Blicher, Alexander D. Rowe, Kim A. Tønseth, Catherine J. Jackson, Tor P.
Utheim, Liesbeth M. C. Janssen, Jens Eriksson and Stig Ove Bøe. Coordinated collective migration and asymmetric cell division in confluent
human keratinocytes without wounding. Nature communications, 1:2041-1723, 2018. doi:10.1038/s41467-018-05578-7.

3.7. Quantitative vector field comparison 17

https://doi.org/10.1038/s41467-018-05578-7

Cellocity, Release 0.1.2

Fig.
6:
Figure
show-
ing
flow
vec-
tor
vi-
su-
al-
iza-
tion
of
the
di-
ag-
o-
nal
trans-
la-
tion
at
60X
mag-
ni-
fi-
ca-
tion.
Im-
ages
were
gen-
er-
ated
us-
ing
the
.
draw_all_flow_frames_superimposed()
method
com-
mon
to
all
FlowAnalysis
ob-
jects,
OpenPivAnalyzer
(left)
and
FarenbackAnalyzer
(right).
Hor-
i-
zon-
tal
scale
bar
de-
notes
a
flow
of
1
𝜇𝑚/𝑠
.

18 Chapter 3. Validation of the Cellocity Software

Cellocity, Release 0.1.2

Fig. 7: Figure showing box plots of how well the calculated 5-𝜎 correlation lengths agree with the the-
oretical maximum value. The value is expressed as a fraction of the calculated correlation length and
the theoretical maximum value, which is given by the magnification. Figure generated by passing either
OpenPivAnalyzer (right) or FarenbackAnalyzer (left) objects to FiveSigmaAnalysis and calling the
calculateCorrelationAllFrames() metod with (orange) and without (blue) temporal median filtering of
raw input data.

Once
again
we
see
an
ad-
van-
tage
in
uti-
liz-
ing
op-
ti-
cal
flow
when
com-
pared
to
PIV.
In
the
fig-
ure
above
the
cal-
cu-
lated
cor-
re-
la-
tion

lengths for each file and frame are divided by the size of the field of view (FOV), giving us a metric to compare
across magnifications. Optical flow captures almost all of the “true” correlation length, while PIV is only
able to capture ~80-85% of the “true” correlation length. Besides being less accurate on this type of data,
PIV analysis also downsamples the images, which gives the FiveSigmaAnalysis fewer vectors to use as
a basis for correlation length calculations. This is also evident in the average frame processing time (below).

Fig.
8:
Figure
show-
ing
a
box
plot
of
pro-
cess-
ing
times
for
in-
di-
vid-
ual
frames
in
the
test
dataset.
Pro-
cess
time
is
in
sec-
onds
and
de-
notes
time
to
run
the
FiveSigmaAnalysis
on
one
frame
of
in-
put
data
on
ei-
ther
FarenbackAnalyzer
data
(left)
or
OpenPivAnalyzer
data
(right).

Here we see an advantage in using PIV because processing times are orders of magnitude lower for the PIV data.
The complexity of the 5-𝜎 correlation length analysis algorithm is 𝑂(𝑛), meaning processing time grows liearly
with input size. It is possible to reduce the processing time of optical flow data by tweaking the r_step parameter
of the ._get_all_angles() metod of FiveSigmaAnalysis. The default value is 1, which means that
the comparison is growing outwards by 1 pixel per step, but a value of 2 would halve the number of comparisons
calculated with little expected effect on the final result.

3.8 In conclusion

Optical Flow and PIV analysis of transmitted light microscopy time-lapse data is commonly used in studies of con-
fluent cell layer dynamics phenomena, for example collective cell migration and wound healing. This is particularly
relevant for studies of primary cells, due to the difficulty in reliably labelling these for cell tracking. To our knowl-
edge, there has not been a systematic evaluation of different pre-processing modalities and optical flow analysis

3.8. In conclusion 19

Cellocity, Release 0.1.2

algorithms on actual real-world, non-simulated, microscopy data. We therefore anticipate that others will find this
software package and the validation dataset described in this chapter useful.

3.9 References

20 Chapter 3. Validation of the Cellocity Software

CHAPTER 4

Developer Information

This section contains information relevant for developing and extending Cellocity functionality. It also contains ran-
dom tidbits of general information that I have uncovered during the development process of this framework. I present
it here in the hope that someone may find it useful.

4.1 Contributing to Cellocity

Contributions are welcome and appreciated. Just fork the Github repository and create a pull request. Information
on how to do so can be found here. Before you do so, please make sure that the documentation strings are written
in reStructuredText so that Sphinx-autodoc can generate automatic API documentation. It would also be greatly
appreciated if the general architecture of Channel, Analyzer, and Analysis objects is maintained.

4.2 Bug reports and feature requests

Bug reposts and feature requests can be submitted through Github.

4.3 A note on metadata and file formats

It goes without saying that you need to have a well calibrated microscope that writes correct metadata into your image
files, in order to perform meaningful cell dynamics analysis. The minimal amount of information needed is data on the
pixel size and the time resolution between frames. Image format specific metadata, such as Micromanager-metadata
and IJmetadata contain this information and constitute the primary source used throughout Cellocity.

Micromanager saves its metadata in a private IFD tag (51123), which Tifffile reads in as a dict, accessible via
tif.micromanager_metadata. The structure of the dictionary is, annoyingly, slightly different between the
1.4.23, 2.0-beta, and 2.0-gamma branches of Micromanager. In 1.4.23 and 2.0-gamma the frame interval is stored
in tif.micromanager_metadata['Summary']['Interval_ms'], but in 2.0-beta it is stored in tif.
micromanager_metadata['Summary']['WaitInterval']. The discrepancy is probably due to the fact
that this value records the wait interval time between frames of the acquisition, not the actual frame interval. It is

21

https://github.com/Oftatkofta/cellocity/pulls
https://github.com/MarcDiethelm/contributing/blob/master/README.md
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
https://github.com/Oftatkofta/cellocity/issues/new/choose

Cellocity, Release 0.1.2

possible to setup an acquisition with a frame interval that the microscope physically cannot keep up with. There-
fore, Cellocity performs an additional sanity check of the individual time stamps of the frames (see Channel.
doFrameIntervalSanityCheck()), in order to make sure you do not run into this problem during analysis.

4.4 Pixel resolution in Micromanager vs ImageJ .tif files

Relevant standard tags in the TIFF specification are XResolution, YResolution, and ResolutionUnit. The resolution
tags are rational numbers, meaning they are generated by dividing two 32-bit integer values. ResolutionUnit is
specified as being either None, Inch or Centimeter. No other units are specified.

When Micromanager saves an ome.tif it writes a rounded off value into the XResolution and YResolution tif tags, and
it sets the ResolutionUnit tag to CENTIMETER. This value carries less precision than the ‘PixelSizeUm’ entry in the
custom TIFF-tag ‘MicroManagerMetadata’, but the TIFF is correctly readable with roughly intact size calibration data
in any reader obeying the TIFF standard.

When ImageJ (v. 1.52p) saves a Hyperstack as tif, it writes the ‘Pixel Width’ and ‘Pixel Height’ values into the
XResolution and YResolution tags with higher precision. However, it sets the ResolutionUnit tag to None, probably
because microns, the standard micrograph unit, are not specified in the TIFF standard.

4.5 Creating your own image format reader

If you want to develop your own reader for your microscope raw data, I suggest you look up the Tiffile project. It
already implements reading of many common tif-formats from multiple microscope vendors. It is a trivial addition to
tweak the Channel object and create your own subclass version specific to your file format, since Channel objects are
basically extensions of Tifffile objects.

Pragmatically, the easiest way to get your non-supported image data set into Cellocity is to open it in FIJI with the
Bioformats importer and thereafter resave it as a hyperstack tif (making sure that the relevant image properties are set
correctly). Then, you can use the ImageJ-reading capabilities built in to Cellocity and tiffile.

4.6 Detailed description of the 5-𝜎 correlation length analysis algo-
rithm

The 5-𝜎 correlation length was defined as the largest distance, 𝑟, where the average angle between two velocity vectors
𝑟 micrometers apart was < 90 with a statistical significance level of 5 𝜎 (𝑝 = 3107).

4.6.1 The algorithm steps:

1. Select each of the 𝑁 vectors along the top left to bottom right diagonal of the FlowAnalyzer output velocity
vector array as v0.

2. For each v0, expand linearly, one row/column position at a time, along the cardinal directions
(up/down/left/right) and calculate the angle between v0 and each of the vectors v𝑟, at each position. Do not
include masked positions, or positions outside of the array. The angles 𝜃 for each v0 are calculated with the
formula: cos 𝜃 = ⟨v0*v𝑟⟩

⟨|v0|*|v𝑟|⟩ .

3. Record all the angles and distances between v0 and v𝑟 for each 𝑁 , and for each time point, 𝑡.

22 Chapter 4. Developer Information

https://www.adobe.io/open/standards/TIFF.html
https://pypi.org/project/tifffile/

Cellocity, Release 0.1.2

4. For each distance 𝑟, and time point 𝑡, average all the angles recorded at this distance: 𝜃 (𝑟) = 1
𝑁 *

𝑁∑︀
𝑖=1

cos−1
(︁

⟨v0*v𝑟⟩
⟨|v0|*|v𝑟|⟩

)︁
.

5. Compute the angular velocity correlation length at each time point. This is defined as the
maximum distance where 𝜃 is < 90 with a statistical significance of 5 𝜎: 𝐶𝑣𝑣 (𝑡) =
max
𝑟→∞

(𝑟) {AVG(𝜃) (r) + 5 * SEM(𝜃(r)) < 90∘}

4.6. Detailed description of the 5-𝜎 correlation length analysis algorithm 23

Cellocity, Release 0.1.2

24 Chapter 4. Developer Information

CHAPTER 5

The Cellocity API Reference

5.1 The channel module

class cellocity.channel.Channel(chIndex, tiffFile, name, sliceIndex=0)
Base Class to keep track of one channel (t,x,y) of microscopy data.

Channel Objects are created from tifffile.Tifffile and act as shallow copies of the TiffPage objects making up the
channel, until a Numpy array is generated by ‘getArray’. Then self.array is populated by a Numpy array from
the raw image data, using the ‘asarray’ function in ‘tiffile.Pages’. Only a single z-slice and channel are handled
per Channel object. A reference to the base ‘tifffile.Tifffile’ is stored in self.tif.

There are currently two very similar subclasses of Channel, MM_Channel, and IJ_Channel to handle Micro-
manager OME-TIFFs and ImageJ hyperstacks, respectively.

Parameters

• chIndex (int) – index of channel to create, 0-based.

• tiffFile (:class:'tifffile') – TiffFile object to extract channel from

• name (str) – name of channel, used in Analysis output

• sliceIndex (int) – z-slice to extract, defaults to 0

doFrameIntervalSanityCheck(maxDiff=0.01)
Performs sanity check on frame intervals.

Checks if the intended frame interval from metadata matches the actual frame interval from individual
frame time stamps. If the mean difference is more than maxDiff the function returns False. Defaults to
allowing a 1% difference between mean actual frame interval and intended frame interval by default.

Parameters maxDiff (float) – Maximum allowed difference between actual frame intervals
and the intended interval, expressed as a fraction.

Returns True if the fraction of actual and intended frame intervals is below maxDiff.

Return type bool

25

Cellocity, Release 0.1.2

fixFrameInterval()
Replaces the intended frame interval with the actual.

Use this method in case the self.doFrameIntervalSanityCheck() method fails. The method overwrites the
intended frame interval stored in self.finterval_ms with the actual, as calculated from the mean of all time
stamp deltas.

Returns New frame interval

Return type float

getActualFrameIntevals_ms()
Returns the intervals between frames in ms as a list.

Note that the length of this list is 1 shorter than the number of frames because frame intervals are calculated.
Returns None if only one frame exists in the channel.

Returns list of time intervals between frames, None if self.array contains fewer than 2 frames.

Return type list

getArray()
Returns channel image data as a numpy array.

Method populates the array from self.pages first time it is called.

Returns Channel image data as 3D-numpy array

Return type numpy.ndarray (type depends of original format)

getElapsedTimes_ms()
Returns a list of elapsed times in ms from the start of image acquisition.

Values are extracted from image timestamps. Note that this is only possible for MicroManager based
Channels (and other timestamped formats). Since ImageJ does not store this information the frame interval
value is trusted and used to calculate elapsed times.

Returns Timestamps of channel frames from the start of the acquisition.

Return type list

getIntendedFrameInterval_ms()
Returns the intended frame interval as recorded in image metadata.

Returns interval between successive frames in ms

Return type int

getPages()
Returns the TiffPages that make up the channel data

Returns a list of the TiffPages extracted from the Tifffile used to create the Channel

Return type list

getTemporalMedianChannel(**kwargs)
Returns a new MedianChannel object where self.array has been replaced with temporal median filtered
channel data

kwargs and defaults are: {doGlidingProjection = True, frameSamplingInterval=3, startFrame=0,
stopFrame=None} Defaults to a gliding 3 frame temporal median of the whole channel if no kwargs are
given.

Returns A MedianChannel object based on the current channel where self.array has been re-
placed by a numpy array of the type float32 representing the temporal median of Channel
data.

26 Chapter 5. The Cellocity API Reference

Cellocity, Release 0.1.2

Return type MedianChannel

getTiffFile()
Returns the Tifffile objedt that the Channel is based on.

Returns Tifffile-object used when Channel was created

Return type object tifffile.Tifffile

trim(start, stop)
Trims the channel from start frame to stop frame, removing pages and array pages outside the given range.

All relevant properties are also trimmed and the Channel name is appended with “_TRIM-‘start‘-stop”

Parameters

• start (int) – start frame of trim (0-indexed)

• stop (int) – stop frame of trim (not included)

Returns None, trims Channel in place

class cellocity.channel.MedianChannel(channel, doGlidingProjection=True, frameSampling-
Interval=3, startFrame=0, stopFrame=None)

A subclass of Channel where the channel array has been temporal median filtered.

Temporal median filtering is very useful when performing optical flow based analysis of time lapse microscopy
data, because it filters out fast moving free-floating debris from the dataset. Note that the median array will be
shorter than the original array. In the default case, if a temporal median of 3 frames is applied, then the the
output array will contain 3-1 = 2 frames less than the input if a gliding projection (default) is performed.

Parameters

• channel (Channel object) – Parent Channel object for the MedianChannel

• doGlidingProjection (bool) – Should a gliding projection be used? Defaults to
True, if False a binned projection is performed, this will also recalculate the frame inter-
val.

• frameSamplingInterval (int) – How many frames to use in temporal median pro-
jection, defaults to 3

• startFrame (int) – Start frame of median projection

• stopFrame (int or None) – Stop frame of median projection (non inclusive), defaults
to None i.e. all frames

getTemporalMedianFilter(doGlidingProjection, startFrame, stopFrame, frameSamplingInter-
val)

Returns a temporal median filter of the parent Channel.

The function runs a gliding N-frame temporal median on every pixel to smooth out noise and to remove
fast moving debris that is not migrating cells.

Parameters

• doGlidingProjection (bool) – Should a gliding (default) or binned projection be
performed?

• stopFrame (int) – Last frame to analyze, defaults to analyzing all frames if None.

• startFrame (int) – First frame to analyze.

• frameSamplingInterval (int) – Do median projection every N frames.

Returns Numpy array

5.1. The channel module 27

Cellocity, Release 0.1.2

Return type numpt.ndarray

cellocity.channel.normalization_to_8bit(image_stack, lowPcClip=0.175, highPc-
Clip=0.175)

Function to rescale 16/32/64 bit arrays to 8-bit for visualizing output

Defaults to saturate 0.35% of pixels, 0.175% in each end by default, which often produces nice results. This is
the same as pressing ‘Auto’ in the ImageJ contrast manager. numpy.interp() linear interpolation is used for the
mapping.

Parameters

• image_stack (Numpy array) – 3D Numpy array to be rescaled

• lowPcClip (float) – Fraction for black clipping bound

• highPcClip (float) – Fraction for white/saturated clipping bound

Returns 8-bit numpy array of the same shape as image_stack

Return type numpy.dtype(‘uint8’)

cellocity.channel.rehape3DArrayTo6D(array_3d)
reshapes 3D (t, x, y) array to (t, 1, 1, x, y, 1).

Used when saving ImageJ compatible tifs using Tifffile where dimensions have to be in TZCYXS order.

Parameters array_3d – 3D numpy array

Returns None

cellocity.channel.reshape6DArrayTo3D(array_6D)
Undoes what reshape3DArrayTo6D does to the shape of the array.

Parameters array_6D – 6D numpy array

Returns

5.2 The analysis module

class cellocity.analysis.AlignmentIndexAnalysis(analyzer)
Calculates the alignment index for the flow vectors in a FlowAnalyzer object.

Alignment index (AI) is defined as in Malinverno et. al 2017. For every frame the AI is the average of the dot
products of the mean velocity vector with each individual vector, all divided by the product of their magnitudes.

The alignment index is 1 when the local velocity is parallel to the mean direction of migration (-1 if antiparallel).

calculateAlignIdxs()
Calculates the aligment index for each pixel in base FlowAnalyzer flow array and populates
self.alignment_idxs

Returns numpy array with same size as analyzer flows, where every entry is the alignment index
in that pixel

Return type numpy.ndarray

calculateAverage()
Calculates the average alignment index for each time point in self.alignment_idxs

Returns self.avg_alignment_idxs, 1D numpy.ndarray of the same length as self.alignment_idxs

Return type numpy.ndarray

28 Chapter 5. The Cellocity API Reference

Cellocity, Release 0.1.2

getAvgAlignIdxAsDf()
Returns frame and average alignment index for the frame as a Pandas DataFrame.

Returns DataFrame with 1 column for average aligmnent index and index = frame number

Return type pandas.DataFrame

getAvgAlignIdxs()
Returns average alignment indexes for Analyzer

Returns

saveArrayAsTif(outdir, fname=None)
Saves the alignment index array as a 32-bit tif with imageJ metadata.

Pixel intensities encode alignment indexes.

Parameters

• outdir (pathlib.Path) – Directory to store file in

• fname – Filename, defaults to Analysis channel name with appended tags +_ai.tif if None

Returns None

saveCSV(outdir, fname=None, tunit=’s’)
Saves a csv of average aligmnent indexes per frame in outdir.

Parameters

• outdir (pathlib.Path) – Directory where output is stored

• fname (str) – filename, defaults to channel name + ai.csv

• tunit (str) – Time unit in output one of: “s”, “min”, “h”, “days”

Returns

class cellocity.analysis.Analysis(analyzer)
Base object for handling data output and analysis and of Analyzer classes.

Parameters analyzer – Analyzer object

getAnalyzer()
Returns the Analyzer that the Analysis is based on.

Returns the Analyzer that the Analyser is based on.

Return type Analyzer

getChannelName()
Returns the name of the channel that the base Analyzer, in turn, is based on.

Returns self.name of the Channel that the base Analyzer is based on.

Return type str

class cellocity.analysis.Analyzer(channel)
Base object for all Analysis object types, handles progress updates.

Parameters channel (class:channel.Channel) – A Channel object

getProgress()
Returns current progress in the interval 0-100.

Returns Percentage progress of analysis

Return type float

5.2. The analysis module 29

Cellocity, Release 0.1.2

resetProgress()
Resets progressbar to 0

Returns

updateProgress(increment)
Updates self.progress by increment

Parameters increment –

Returns

class cellocity.analysis.FarenbackAnalyzer(channel, unit)
Performs OpenCV’s Farenbäck optical flow anaysis.

Parameters

• channel – Channel object

• unit – (str) “um/s”, “um/min”, or “um/h”

doFarenbackFlow(pyr_scale=0.5, levels=3, winsize=15, iterations=3, poly_n=5, poly_sigma=1.2,
flags=0)

Calculates Farenback flow for a single channel time lapse with validated default parameters.

returns numpy array of dtype int32 with flow in the unit px/frame Output values need to be multiplied by
a scalar to be converted to speeds.

class cellocity.analysis.FiveSigmaAnalysis(flowanalyzer, maxdist=None)
Calculates the 5-sigma corrleation length for each frame of flow (see Lång et. al 2018 or the documentation for
a more detailed explanation).

The 5-𝜎 correlation length was defined as the largest distance, 𝑟, where the average angle between two velocity
vectors 𝑟 micrometers apart was < 90 with a statistical significance level of 5 𝜎 (𝑝 = 3107).

Parameters

• flowanalyzer (analysis.FlowAnalyzer) – a FlowAnalyzer object

• maxdist (int) – Maximum distance (in pixels) to test if None defaults to max(flow width,
height)

calculateCorrelationAllFrames(n_sigma=5)
Calculates correlation length for all flow frames

Parameters n_sigma –

Returns

calculateCorrelationOneFrame(frame, n_sigma=5)

Parameters

• frame – (flow) frame to calculate correlation length for

• n_sigma – Number of standard deviations to consider significant

Returns

getCorrelationLengths()
Returns correlation lengths as a dictionary frame:correlation_length_in_um

Returns

getCorrelationLengthsAsDf(tunit=’s’)
Returns a Pandas DataFrame with index:time in “tunit” and Correlation length.

Parameters tunit – Time unit in output one of: “s”, “min”, “h”, “days”

30 Chapter 5. The Cellocity API Reference

Cellocity, Release 0.1.2

Returns pandas.Dataframe

saveCSV(outdir, fname=None, tunit=’s’)
Saves a csv of correlation lengths per frame in outdir.

Parameters

• outdir (pathlib.Path) – Directory where output is stored

• fname (str) – filename, defaults to channel name + _Cvv.csv

• tunit (str) – Time unit in output one of: “s”, “min”, “h”, “days”

Returns

class cellocity.analysis.FlowAnalysis(analyzer)
Base object for analysis of optical flow and PIV.

Works on FlowAnalyzer objects, such as FarenbackAnalyzer and OpenPIVAnalyzer. Needs a 4D (t, x, y, uv)
numpy array representing a time lapse of a vector field to initialize.

draw_all_flow_frames(scalebarFlag=False, scalebarLength=10, **kwargs)
Draws flow on a black background as an 8-bit array.

Draws a subset of the flow as lines on top of a black background. Because the flow represents what happens
between frames, the flow is not drawn on the last frame of the channel, which is discarded. Creates and
populates self.drawnframes to store the drawn array. If the underlying channel object is 16-bit, it will
converted to 8bit with the channel.normailzation_to_8bit() function.

Parameters

• scalebarFlag (bool) – Should a scale bar be drawn on the output?

• scalebarLength – What speed should the scale bar represent with its length the unit
is set by the unit given to the Analyzer

• kwargs (dict) – Additional arguments passed to self._draw_flow_frame()

Returns 8bit numpy array

draw_all_flow_frames_superimposed(scalebarFlag=False, scalebarLength=10, **kwargs)
Draws flow superimposed on the background channel as an 8-bit array.

Draws a subset of the flow as lines on top of the background channel. Because the flow represents what
happens between frames, the flow is not drawn on the last frame of the channel, which is discarded. Creates
and populates self.drawnframes to store the drawn array. If the underlying channel object is 16-bit, it will
converted to 8bit with the channel.normailzation_to_8bit() function.

Parameters

• scalebarFlag (bool) – Should a scale bar be drawn on the output?

• scalebarLength – What speed should the scale bar represent with its length the unit
is set by the unit given to the Analyzer

• kwargs (dict) – Additional arguments passed to self._draw_flow_frame()

Returns 8bit numpy array

saveFlowAsTif(outpath)
Saves the drawn frames as an imageJ compatible tif with rudimentary metadata.

Parameters outpath (Path object) – Path to savefolder

Returns None

5.2. The analysis module 31

Cellocity, Release 0.1.2

class cellocity.analysis.FlowAnalyzer(channel, unit)
Base object for all optical flow analysis object types.

Stores UV vector components in self.flows as a (t, x, y, uv) numpy array. Also calculates and stores a scaling
factor that converts flow from pixels per frame to distance/time.

Parameters unit (str) – must be one of [“um/s”, “um/min”, “um/h”]

get_flow_shape()
Returns the shape of self.flows

Returns the shape of self.flows

Return type tuple

get_pixel_size()
Returns the pixel size in um of the Analyzer.

Some type of Analyzers, such as the OpenPivAnalyzer change the pixel size of the array by downsampling.

Returns pixel size in um of the Analyzer

Return type float

get_u_array(frame)
Returns the u-component array of self.flows at frame

Parameters frame (int) – frame to extract u-component matrix from

Returns u-component of velocity vectors as a 2D NumPy array

Return type numpy.ndarray

get_v_array(frame)
Returns the v-component array of self.flows

Parameters frame (int) – frame to extract v-component matrix from

Returns v-component of velocity vectors as a 2D NumPy array

Return type numpy.ndarray

class cellocity.analysis.FlowSpeedAnalysis(analyzer)
Handles all analysis and data output of speeds from FlowAnalyzers.

Calculates pixel-by-pixel speeds from flow vectors.

calculateAverageSpeeds()
Calculates the average speed for each time point in self.speeds

Returns self.avg_speeds

Return type 1D numpy.ndarray of the same length as self.speeds

calculateHistograms(hist_range=None, nbins=100, density=True)
Calculates a histogram for each frame in self.speeds

Parameters

• hist_range (tuple) – Range of histogram, defaults to 0-max

• nbins (int) – Number of bins in histogram, defaults to 100

• density (bool) – If False, the result will contain the number of samples in each bin.
If True (default), the result is the value of the probability density function at the bin,
normalized such that the integral over the range is 1.

Returns self.histograms

32 Chapter 5. The Cellocity API Reference

Cellocity, Release 0.1.2

Return type tuple (numpy.ndarray, bins)

calculateSpeeds(scaler=None)
Calculates speeds from the flows in parent Analyzer

Turns a (t, x, y, uv) flow numpy array with u/v component vectors in to a (t, x, y) speed array. Populates
self.speeds. Scales all the output by multiplying with scaler, defaults to using the self.scaler from the base
FlowAnalyzer object if the scaler argument is None.

self.scaler is the scalar quantity that converts flow vectors from the general unit of pixels/frame in to the
desired output unit, such as um/s.

:returns self.speeds :rtype: numpy.ndarray

getAvgSpeeds()
Returns average speed per frame as a 1D Numpy array.

Returns average speed per frame

Return type numpy.ndarray (1D)

getAvgSpeedsAsDf()
Returns frame and average speed for the frame as a Pandas DataFrame.

Returns DataFrame with 1 column for average speed and index = frame number

Return type pandas.DataFrame

getSpeeds()
Returns self.speeds.

Calculates self.speeds with default values if it has not already been calculated.

Returns self.speeds as a 3D Numpy array

Return type numpy.ndarray (3D)

saveArrayAsTif(outdir, fname=None)
Saves the speed array as a 32-bit tif with imageJ metadata.

Pixel intensities encode speeds in the chosen analysis unit

Parameters

• outdir (pathlib.Path) – Directory to store file in

• fname – Filename, defaults to Analysis channel name with appended tags +_speeds-
SizeUnit-per-TimeUnit.tif if None

Returns None

saveCSV(outdir, fname=None, tunit=’s’)
Saves a csv of average speeds per frame in outdir.

Parameters

• outdir (pathlib.Path) – Directory where output is stored

• fname (str) – filename, defaults to channel name + speeds.csv

• tunit (str) – Time unit in output one of: “s”, “min”, “h”, “days”

Returns

class cellocity.analysis.IopAnalysis(flowanalyzer)
Calculates the instantaneous order parameter (iop) for each frame of flow (see Malinverno et. al 2017 for a more
detailed explanation).

5.2. The analysis module 33

Cellocity, Release 0.1.2

The iop is a measure of how similar the vectors in a field are, which takes in to account both the direction
and magnitudes of the vectors. iop is always between 0 and 1, with iop = 1 being a perfectly uniform field of
identical vectors, and iop = 0 for a perfectly random field.

Parameters flowanalyzer (analysis.FlowAnalyzer) – a FlowAnalyzer object

calculateIops()
Calculates the IOP for each frame in base FlowAnalyzer flow array and populates self.iops

Returns list of the IOP from each frame

Return type list

getIops()
Returns the instantaneous order parameter for Analyzer

Returns list of instantaneous order parameters

Return type list

getIopsAsDf()
Returns frame and iop for the frame as a Pandas DataFrame.

Returns DataFrame with 1 column for iop and index = frame number

Return type pandas.DataFrame

saveCSV(outdir, fname=None, tunit=’s’)
Saves a csv of the iop per frame in outdir.

Parameters

• outdir (pathlib.Path) – Directory where output is stored

• fname (str) – filename, defaults to channel name + iop.csv

• tunit (str) – Time unit in output one of: “s”, “min”, “h”, “days”

Returns

class cellocity.analysis.OpenPivAnalyzer(channel, unit)
Implements OpenPIV’s optical flow anaysis.

Parameters

• channel – Channel object

• unit – (str) “um/s”, “um/min”, or “um/h”

doOpenPIV(**piv_params)
The function does PIV analysis between every frame in input Channel.

It populates self.flows with the u and v components of the velocity vectors as two (smaller) numpy arrays.
An additional array, self.flow_coorinates, with the x and y coordinates corresponding to the centers of the
search windows in the original input array is also also populated.

Parameters piv_params (dict) – parameters for the openPIV function ex-
tended_search_area_piv

Returns (u_component_array, v_component_array, original_x_coord_array, origi-
nal_y_coord_array)

Return type tuple

34 Chapter 5. The Cellocity API Reference

Cellocity, Release 0.1.2

5.3 The validation module

cellocity.validation.combine_lcorr_and_process_time_to_df(lcorrdf, processtime-
dict, file_name, ana-
lyzer_name)

Performs combination and mutation of correlation length dataframe to simplify visualization and plotting Used
by run_5sigma_validation as a helper function.

cellocity.validation.convertChannel(fname, finterval=1)
Converts a mulitiposition MM file to a timelapse Channel with finterval second frame interval.

Parameters

• fname – Path to file

• finterval – desired frame interval in output Channel, defaults to 1 second

Returns Channel

Return type channel.Channel

cellocity.validation.convertMedianChannel(fname, finterval=1)
Converts a mulitiposition ome.tif MM file to a timelapse MedianChannel with finterval second frame interval.

Parameters

• fname – Path to file

• finterval – desired frame interval in output Channel, defaults to 1 second

Returns MedianChannel with default 3-frame gliding window

Return type channel.MedianChannel

cellocity.validation.get_data_as_df(analyzer, analyzername)
Creates FlowSpeedAnalysis(), AlignmentIndexAnalysis() and IopAnalysis() from a FlowAnalyzer.

Calculates average frame speeds and alignment indexes and returns a DataFrame with the results.

Parameters

• analyzer (analysis.FlowAnalyzer) – FlowAnalyzer

• analyzername (str) – Name of FlowAnalyzer

Returns pd.DataFrame containing results and information derived from channel.name

Return type pandas.DataFrame

cellocity.validation.make_ai_plot(df)
Generates a plot comparing average frame alignment indexes from dataframe

cellocity.validation.make_channels(inpath)
Creates a list of Channel objects from files in inPath.

Parameters inpath – Path

Returns list of Channels

Return type list

cellocity.validation.make_fb_flow_analyzer(ch)
Creates a FarenbackAnalyzer and performs optical flow calculations with default settings in um/s.

Parameters ch – channel.Channel

Returns anlysis.FarenbackAnalyzer

5.3. The validation module 35

Cellocity, Release 0.1.2

cellocity.validation.make_iop_plot(df)
Generates a plot comparing instantaneous order parameters

cellocity.validation.make_lcorr_plot(lcorrdf)
Generates a plot comparing correlation lengths between analyzers and magnifications

cellocity.validation.make_lcorr_proces_time_plot(lcorrdf)
Generates a bar plot comparing correlation length processing times for the two analyzers.

cellocity.validation.make_piv_analyzer(ch)
Creates an openPivAnalyzer and performs optical flow calculations with default settings in um/s.

Parameters ch – channel.Channel

Returns anlysis.OpenPivAnalyzer

cellocity.validation.make_proces_time_plot(df)
Generates a bar plot comparing processing times for the two analyzers.

cellocity.validation.make_speed_plot(df)
Generates a plot comparing average frame flow speeds from dataframe

cellocity.validation.processAndMakeDf(ch_list)
Creates analyzers from and runs test functions on a list of Channels.

Parameters

• ch_list (list) – List of Channel objects

• outpath (pathlib.Path) – Path where to save output

Returns Pandas DataFrame with data from analysis

Return type pandas.DataFrame

cellocity.validation.run_5sigma_validation(inpath, outpath)
Runs the vaildation of the 5sigma analysis on files in inpath, saves figures and a csv in outpath.

Parameters

• inpath – input Path

• outpath – output Path

Returns None

cellocity.validation.run_base_validation(inpath, outpath)
Runs the basic validation on data in inpath, saves figures and csv files in outpath.

Parameters

• inpath – input Path

• outpath – output Path

Returns None

36 Chapter 5. The Cellocity API Reference

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

37

Cellocity, Release 0.1.2

38 Chapter 6. Indices and tables

Bibliography

[1] Gary Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 25:120–125, 2000.

[2] John D. Hunter. Matplotlib: a 2d graphics environment. Computing in Science & Engineering, 9(3):90–95, 2007.
doi:10.1109/MCSE.2007.55.

[3] Emma Lång, Anna Połeć, Anna Lång, Marijke Valk, Pernille Blicher, Alexander D. Rowe, Kim A. Tønseth,
Catherine J. Jackson, Tor P. Utheim, Liesbeth M. C. Janssen, Jens Eriksson, and Stig Ove Bøe. Coordinated
collective migration and asymmetric cell division in confluent human keratinocytes without wounding. Nature
communications, 9(1):3665, 2018. doi:10.1038/s41467-018-05578-7.

[4] Chiara Malinverno, Salvatore Corallino, Fabio Giavazzi, Martin Bergert, Qingsen Li, Marco Leoni, Andrea Dis-
anza, Emanuela Frittoli, Amanda Oldani, Emanuele Martini, Tobias Lendenmann, Gianluca Deflorian, Galina V.
Beznoussenko, Dimos Poulikakos, Ong Kok Haur, Marina Uroz, Xavier Trepat, Dario Parazzoli, Paolo Maiuri,
Weimiao Yu, Aldo Ferrari, Roberto Cerbino, and Giorgio Scita. Endocytic reawakening of motility in jammed
epithelia. Nature materials, 16(5):587–596, 2017. doi:10.1038/nmat4848.

[5] Zachary J. Taylor, Roi Gurka, Gregory A. Kopp, and Alex Liberzon. Long-duration time-resolved piv to study
unsteady aerodynamics. IEEE Transactions on Instrumentation and Measurement, 59(12):3262–3269, 2010.
doi:10.1109/TIM.2010.2047149.

[6] Stefan van der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure for efficient numerical
computation. Computing in Science Engineering, 13(2):22–30, 2011. doi:10.1109/MCSE.2011.37.

39

https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41467-018-05578-7
https://doi.org/10.1038/nmat4848
https://doi.org/10.1109/TIM.2010.2047149
https://doi.org/10.1109/MCSE.2011.37

Cellocity, Release 0.1.2

40 Bibliography

Python Module Index

c
cellocity, 25
cellocity.analysis, 28
cellocity.channel, 25
cellocity.validation, 35

41

Cellocity, Release 0.1.2

42 Python Module Index

Index

A
AlignmentIndexAnalysis (class in celloc-

ity.analysis), 28
Analysis (class in cellocity.analysis), 29
Analyzer (class in cellocity.analysis), 29

C
calculateAlignIdxs() (celloc-

ity.analysis.AlignmentIndexAnalysis method),
28

calculateAverage() (celloc-
ity.analysis.AlignmentIndexAnalysis method),
28

calculateAverageSpeeds() (celloc-
ity.analysis.FlowSpeedAnalysis method),
32

calculateCorrelationAllFrames() (cel-
locity.analysis.FiveSigmaAnalysis method),
30

calculateCorrelationOneFrame() (celloc-
ity.analysis.FiveSigmaAnalysis method), 30

calculateHistograms() (celloc-
ity.analysis.FlowSpeedAnalysis method),
32

calculateIops() (cellocity.analysis.IopAnalysis
method), 34

calculateSpeeds() (celloc-
ity.analysis.FlowSpeedAnalysis method),
33

cellocity (module), 25
cellocity.analysis (module), 28
cellocity.channel (module), 25
cellocity.validation (module), 35
Channel (class in cellocity.channel), 25
combine_lcorr_and_process_time_to_df()

(in module cellocity.validation), 35
convertChannel() (in module cellocity.validation),

35
convertMedianChannel() (in module celloc-

ity.validation), 35

D
doFarenbackFlow() (celloc-

ity.analysis.FarenbackAnalyzer method),
30

doFrameIntervalSanityCheck() (celloc-
ity.channel.Channel method), 25

doOpenPIV() (cellocity.analysis.OpenPivAnalyzer
method), 34

draw_all_flow_frames() (celloc-
ity.analysis.FlowAnalysis method), 31

draw_all_flow_frames_superimposed()
(cellocity.analysis.FlowAnalysis method), 31

F
FarenbackAnalyzer (class in cellocity.analysis), 30
FiveSigmaAnalysis (class in cellocity.analysis), 30
fixFrameInterval() (cellocity.channel.Channel

method), 25
FlowAnalysis (class in cellocity.analysis), 31
FlowAnalyzer (class in cellocity.analysis), 31
FlowSpeedAnalysis (class in cellocity.analysis), 32

G
get_data_as_df() (in module cellocity.validation),

35
get_flow_shape() (cellocity.analysis.FlowAnalyzer

method), 32
get_pixel_size() (cellocity.analysis.FlowAnalyzer

method), 32
get_u_array() (cellocity.analysis.FlowAnalyzer

method), 32
get_v_array() (cellocity.analysis.FlowAnalyzer

method), 32
getActualFrameIntevals_ms() (celloc-

ity.channel.Channel method), 26
getAnalyzer() (cellocity.analysis.Analysis method),

29

43

Cellocity, Release 0.1.2

getArray() (cellocity.channel.Channel method), 26
getAvgAlignIdxAsDf() (celloc-

ity.analysis.AlignmentIndexAnalysis method),
28

getAvgAlignIdxs() (celloc-
ity.analysis.AlignmentIndexAnalysis method),
29

getAvgSpeeds() (celloc-
ity.analysis.FlowSpeedAnalysis method),
33

getAvgSpeedsAsDf() (celloc-
ity.analysis.FlowSpeedAnalysis method),
33

getChannelName() (cellocity.analysis.Analysis
method), 29

getCorrelationLengths() (celloc-
ity.analysis.FiveSigmaAnalysis method),
30

getCorrelationLengthsAsDf() (celloc-
ity.analysis.FiveSigmaAnalysis method),
30

getElapsedTimes_ms() (cellocity.channel.Channel
method), 26

getIntendedFrameInterval_ms() (celloc-
ity.channel.Channel method), 26

getIops() (cellocity.analysis.IopAnalysis method), 34
getIopsAsDf() (cellocity.analysis.IopAnalysis

method), 34
getPages() (cellocity.channel.Channel method), 26
getProgress() (cellocity.analysis.Analyzer method),

29
getSpeeds() (cellocity.analysis.FlowSpeedAnalysis

method), 33
getTemporalMedianChannel() (celloc-

ity.channel.Channel method), 26
getTemporalMedianFilter() (celloc-

ity.channel.MedianChannel method), 27
getTiffFile() (cellocity.channel.Channel method),

27

I
IopAnalysis (class in cellocity.analysis), 33

M
make_ai_plot() (in module cellocity.validation), 35
make_channels() (in module cellocity.validation),

35
make_fb_flow_analyzer() (in module celloc-

ity.validation), 35
make_iop_plot() (in module cellocity.validation),

35
make_lcorr_plot() (in module celloc-

ity.validation), 36

make_lcorr_proces_time_plot() (in module
cellocity.validation), 36

make_piv_analyzer() (in module celloc-
ity.validation), 36

make_proces_time_plot() (in module celloc-
ity.validation), 36

make_speed_plot() (in module celloc-
ity.validation), 36

MedianChannel (class in cellocity.channel), 27

N
normalization_to_8bit() (in module celloc-

ity.channel), 28

O
OpenPivAnalyzer (class in cellocity.analysis), 34

P
processAndMakeDf() (in module celloc-

ity.validation), 36

R
rehape3DArrayTo6D() (in module celloc-

ity.channel), 28
resetProgress() (cellocity.analysis.Analyzer

method), 29
reshape6DArrayTo3D() (in module celloc-

ity.channel), 28
run_5sigma_validation() (in module celloc-

ity.validation), 36
run_base_validation() (in module celloc-

ity.validation), 36

S
saveArrayAsTif() (celloc-

ity.analysis.AlignmentIndexAnalysis method),
29

saveArrayAsTif() (celloc-
ity.analysis.FlowSpeedAnalysis method),
33

saveCSV() (cellocity.analysis.AlignmentIndexAnalysis
method), 29

saveCSV() (cellocity.analysis.FiveSigmaAnalysis
method), 31

saveCSV() (cellocity.analysis.FlowSpeedAnalysis
method), 33

saveCSV() (cellocity.analysis.IopAnalysis method), 34
saveFlowAsTif() (cellocity.analysis.FlowAnalysis

method), 31

T
trim() (cellocity.channel.Channel method), 27

44 Index

Cellocity, Release 0.1.2

U
updateProgress() (cellocity.analysis.Analyzer

method), 30

Index 45

	Introduction to Cellocity
	A 30 second pitch
	Installing Cellocity
	Cellocity development history
	Cellocity backbone
	Cellocity architecture
	Examples of algorithms and vector field quantifications implemented
	Examples
	Support
	References

	Cellocity Tutorial
	Step-by-step guide
	Load a file and create a Channel object
	Preprocess Channel object
	Prepare for Analysis by creating an Analyzer object
	Extract data by creating an Analysis object.

	Validation of the Cellocity Software
	Validation dataset
	Downloading the validation dataset
	Performing the validation on your local installation
	Process time
	Analysis of flow speeds
	Qualitative vector field comparison
	Quantitative vector field comparison
	In conclusion
	References

	Developer Information
	Contributing to Cellocity
	Bug reports and feature requests
	A note on metadata and file formats
	Pixel resolution in Micromanager vs ImageJ .tif files
	Creating your own image format reader
	Detailed description of the 5- correlation length analysis algorithm
	The algorithm steps:

	The Cellocity API Reference
	The channel module
	The analysis module
	The validation module

	Indices and tables
	Bibliography
	Python Module Index
	Index

